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FOUR-DIMENSIONAL, OFF-CENTERED 

BEAM-BEAM INTERACTION 

Leo Michelotti and Selcuk Saritepe 

Fermi National Accelemtor Laboratory 

Batavia. Illinois 60510 

During Fermilab’s current collider run a beam separation scheme will be im- 

plemented in the Tevatron employing non-planar, helical orbits. In the course of 

studying off-centered beam-beam interactions we observed (a) detailed bifurcations 

of separatrices in four-dimensional transverse phase space, (b) phaselocked, “irreg- 

ular” resonant orbits, and (c) exceedingly weakly chaotic orbits. We report these 

observations and discuss briefly other collider issues related to off-centered beam- 

beam interactions: (a) tune shift and (b) perturbations and splitting of the closed 

orbit. 
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I. INTRODUCTION 

In the 1988-89 collider run at Fermilab, six antiproton bunches collided head-on 

with six proton bunches at twelve sites placed symmetrically around the Tevatron. 

Only the one at the CDF detector (BO) was productive for physics, the other eleven 

having the negative effect of contributing to a total beam-beam induced tune shift 

and spread of 0.024, large enough to cover much of the working area between the 5t” 

and 7th order resonances lines. In order to reduce the tune spread and allow us to 

increase current and luminosity in the Tevatron during the 1992 collider run, proton 

and antiproton bunches, while still occupying the same beampipe, will be separated 

everywhere except at two interaction regions (IRS), BO and DO. Separation schemes 

have been employed before, at CESR and at the SPS, but Fermilab’s will have the 

unique feature of being fully two-dimensional: the fid ucial (design) closed orbits will 

have the topology of a double helix that is pinched at the IRS, with protons moving on 

one branch, antiprotons on the other. At sites where opposing bunches will enroumter 

each other they will be separated by approximately five transverse bunch widths, on 

the average. The number of bunches per beam will remain six in the 1992 collider run 

but plans exist to increase this eventually to thirty-six. With 33 - 50 x 10”’ protons 

and 6 x 10” antiprotons per bunch, and assuming 8’ N 50 cm, this would increase 

the luminosity to 5 x 1031 cm-2sec-1. 

Theoretical and experimental studies were conducted to study orbit stability, in 

the weak-strong approximation, under the double-helix scenario.[l4, 171 A “probe” 

antiproton experiences nonlinear kicks from a sequence of %ource” proton bunches, 

and vice versa. Parity of the beam-beam interaction is broken because the fiducial 

(design closed) orbits of the two species do not coincide, so all resonances can be ex- 

cited. The effects are distributed, much like those of small nonlinear fields distributed 

around the ring, and we can expect resonances to play a role in the resultant motion. 
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The principal observations reported here are (a) bifurcations of chaotic separa- 

trices leading to (b) the existence of very low entropy chaotic orbits. The “control 

parameter” for these bifurcations was the separator strength, which controlled the 

size of the double helix. However, before we proceed to discuss these, we shall brielly 

summarize a few practical matters concerning closed orbit distortions and tune spread. 

II. COLLIDER CONSIDERATIONS 

The practical, engineering results of our studies, some of which have been re- 

ported elsewhere [14] were presented at a DOE review in August, 1989 [lo]. While 

not summarizing these in detail, we shall quickly touch upon a few important features 

in connection with closed orbit distortion, tune shift, and closed orbit bifurcations. 

l closed orbit One of the most critical issues was the distortion of proton and an- 

tiproton closed orbits produced by the multiple, off-centered beam-beam interactions. 

Deviations from the fiducial orbits will obviously be negligibly small at all encounter 

sites except the two crucial ones: the IRS, where the fiducial orbits coincide for a 

space of X 50 meters. Significant fluctuations away from this coincidence would lead 

to decreased luminosity and possible instability. Exact closed orbits, including the 

off-centered beam-beam interactions, were calculated at BO and DO using Newton’s 

method to converge on the solution; Jacobians were obtained using automated dif- 

ferentiation.(l2] For reasonable scenarios - say, 36 x 36 with 6 x 10” protons pei 

bunch - the displacement at full excitation was IO%, or less, of the transverse bunch 

width.[l4] Angular offsets of the closed orbit were similarly small: letting $ represent 

the tilt angle of the closed orbit, relative to the fiducial orbit, we typically found that 

+0.5; 

I71 

=“.5 771; 
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where I is the bunch length, o is the transverse bunch width (rms), and /3* is the enve- 

lope lattice function at the IR. If we take l/p N O(1) and 4a/l = (20)/(1/2) s OI,,,,,~I, 

as a “maximum” possible angle subtended by a particle passing through the lo region 

of the bunch we get 

ti x 0.1 ~bund, . 

Interpreted in this way, the angle subtended by the closed orbit of the (probe) bunch 

is only about 10% of the total available proton bunch angle. 

Following a similar line of reasoning for individual particles in the bunch, leads 

to a more interesting conclusion. If the probe particles are assumed to lie on an 

invariant phase space distribution before taking the beam-beam kicks into account, 

then it must be that at DO 

cTy’ = u,//3’ 

= (%/4(VP’) 

= ~~bmh 4 

p* is so small that particles within the probe bunch are traversing the source bunch 

at angles that are 25%, or so, of ~bU,,&, in contradiction to the basic assumption of 

parallel passage through the source bunch, which is required for the derivation of 

Montague’s beam-beam kick.[l5] The kick approximation is not valid for low beta 

collisions. A second objection to Montague’s kick follows from the observation that 

fi, and therefore g, is changing rapidly in the low-beta region. Because of this, an- 

tiprotons at the head or tail of the bunch will experience different beam-beam forces 

than those in the center. However, in both cases, the error we make is in the right 

direction: we are ignoring both the dependence on I’ and y’ and the larger transverse 

bunch widths ~ and weaker beam-beam kicks - on either side of of the 1R.s. ITsing 
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impulsive kicks tends to overestimate the effects of beam-beam interactions; in this 

sense it is a “conservative” approximation. Momentum transfers more appropriate to 

oblique passage through a bunch have been studied by Krishnagopal and Siemann [6] 

and by Kheifets and Voss [5]. 

l tune shift and spread Because the closed orbit was found via an application 

of Newton’s method, we simultaneously had available, in the Jacobians, all the infor- 

mation necessary to compute small-amplitude tune shifts induced by the beam-beam 

interactions. These numbers also indicate the tune spread in a bunch, since the par- 

ticles closest to the center undergo the full tune shift while that of those at large 

amplitudes is negligible. These results were extended and checked later by direct 

simulation and machine studies.[l7] 

When separators are off and the helix is closed, proton tunes shifted by x 0.13, 

which was the amount expected from the simple formula for round beams, 

[ = 0.007 N[10’0]/cj,,,(7r mm - mr] 

for the beam-beam tune shift per collision at 900 GeV. (On the other hand, the 

maximum tune shift for antiprotons was smnller than expected, an effect which we 

shall return to below.) As separators achieve their full voltage, these tunes drop 

quickly to those expected from the two head-on collisions plus a little extra from the 

long-range beam-beam interactions. 

Using the small-amplitude tune shifts as a calibration check, and with the helix 

fully open, comparisons were made between beam-beam tune shifts obtained by (a) 

Fourier analyzing the orbits arising from simulation (tracking) and (1)) semi-analytic 

calculation using an integral expression based on neglecting all contribution except 

the two direct beam-beam interactions at the 1R.s. Derivation of this integral ex- 

pression, originally due to Bambade [l], is given in the Appendix. The amplitude 
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dependence of the tune shift was in excellent agreement, but the simulated tune shift 

was systematically about 0.004 above the calculated one. That this indeed arose from 

the off-centered collisions was checked by direct computation in the following way. 

The long range part of the beam-beam impulse, obtained by omitting the exponential 

piece, has a l/v dependence. 

Ad[lO-s] = -2.9 (N[j9”‘]/E[TeV]) (rJ]#) [mm-‘] , 

Here N is the number of protons per source bunch, E is the energy per proton, and 

c is the two-dimensional transverse vector from the center of the source bunch to 

the probe particle. This can be thought of as arising from a magnetic field whose 

effective multipole content is obtained by expanding E = d + 11, where d is the offset 

between beams, and thinking of this as a relation between complex variables rather 

than two-dimensional vectors. The effective multipole components of this kick are 

then written in the following convenient fashion. 

F /de ( b, -t ia, ) = 2.9 x lo-“m i/E;; (-l)“(I/d)“+’ 

Note well that d in this formula is the complex number z + iy, where :c and y are the 

components of 1~. Plugging in the numbers appropriate to our model, N = 33, E = 1, 

and setting n = 1 (quadrupole), the normal quadrupole effective strength became, 

$ [m-‘] = -9.6 x lo-4 

effective 

The expected tune shift from this effective quadrupole “error” is given by the following 

expression. 

IJVI long range = & &$ 
I I 

where the sum is taken over the seventy long range beam-beam hits. The value 

obtained, 0.0044, completely accounted for the discrepancy between theory and sim- 

ulation. Even with increased number of bunches, the tune shift induced by the extra 
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beam-beam “encounters” was only about half of that attributable to one head-on 

collision. 

The tune spread was not appreciably influenced by the long-range collisions. This 

was as expected, as their contributions should be down by two powers of u/d con- 

pared to the tune shift. 

l closed orbit bifurcation The zero-amplitude tunes of both protous and an- 

tiprotons behaved in a similar manner, but the “closed helix” tune shifts of the 

antiprotons were much lower than expected. Resolutiou of this discrepancy involved 

the bifurcation of the antiproton closed orbit. By following the evolution of proton 

and antiproton closed orbits as the helix was adiabatically closed we observed that 

the proton closed orbit returned to its fiducial, passing through the center of the IR, 

but that of the antiprotons did not. Rather, it approached one of a limiting family 

of closed orbits which were displaced from the fiducial orbit by approximately one 

transverse bunch width. Further study led to the conclusion that the antiproton 

fiducial orbit had become unstable as the tune shift became so large that the tuue 

passed an integral value. Although this was not anticipated, it should have brew. The 

phenomenon is not much different from the usual stop-baud phenomenon of linear 

instability, in which the fiducial orbit also becomes unstable. The differeuce here is 

that the nonlinearity of the interaction enables closed orbits to move out from the 

center. These elliptic, off-centered closed orbits explaiued the “discrepancy” between 

the calculated and expected tune shifts. The tunes we were observing were assoc,ia.ted 

with them, not with the fiducial orbit, which was no longer stable. 

III. TRACKING A SEPARATRIX 

The graphical exploration of phase space has been a standard practice in accel- 

erator physics since the 1950’s. With the rapid developmeut of n~odrru computel 



graphics during the past fifteen years, or so, this visual display of information has 

gained increased acceptance even among pure mathematicians as a way of gaining 

insight into the behavior of dynamical systems. After preliminary exploration ill 

which the analyst observes the existence of phase space structures - fixed points, 

periodic orbits, attractors, resonant orbits, separatrices - analytic models are em- 

ployed in order to “explain” these structures. The importance of these graphics-based 

exploratory activities lies in providing the analyst with limited, focussed objectives: 

identified structures or phenomena which characterize behavior, and whose ezistmce 

would have been dijkult (or almost impossible) to discover using analysis alme. 

Exploring phase space is greatly facilitated if the graphics are designed for more 

than display, that is, if one can employ graphical input as well as output. This is 

especially true when going beyond simple, and generally inadequate, two-tlime~rsion;~l 

models. In particular, finding the separatrices of four-dimensional Hamiltonian sys- 

tems and following them through bifurcations are not trivial tasks. They were accom- 

plished graphically here using AESOP, a Phigs-based graphics shell written for the 

exploration of four-dimensional phase space mappings.[l3,14, lS] A typical AESOP 

screen is displayed in Figure 1. It shows orbits, each marked wit11 a different color fol 

identification, in the vicinity of a separatrix of the 2~1 - 2~2 resonance generated by 

the centered beam-beam interaction. The top two viewports contain two-dimensional 

projections of four-dimensional transverse phase space: the upper left (right) shows 

orbits projected along normalized horizontal, z-z’ (vertical, y-y’) coordinates. The 

coordinates for the three-dimensional, perspective projections in the lower viewports 

are the horizontal and vertical “angle” coordinates and an “action” coordinate -- 

which is more an amplitude squared than a true action - horizontal action in the left 

hand plot and vertical in the right. These coordinates are obtained by expressing 

the two-dimensional projections in polar, rather than Cartesian, coordinates, the ac- 
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tions being equivalent to radius squared. These “angle-angle-action”plots have been 

used before, for example in references [7, p.2781, [14] and [lG], and are particularly 

good for exploring resonance structure. Initial conditions for orbits are chosen graph 

ically, either by using traditional two-dimensional cursors in the top two viewports 01 

a specially programmed four-dimensional cursor which is bound to the bottom two 

(three-dimensional) projections. The low entropy orbits referred to in the introduc- 

tion were observed by accident several years ago [14] but it was the introduction of 

the four-dimensional cursor which made it possible to follow the bifurcations that 

lead up to them. 

Some care must be taken in interpretation. For example, the “tube”-like strut.- 

tures are actually two-dimensional tori; in particular, the two red t,ubes just left and 

right of center actually belong to the same torus. We are viewing a projection of angle 

data which gets wrapped with 27r periodicity. The blue and gold orbits are exceedingly 

close to a separatrix: the blue is within a thin chaotic layer associated with the sepa- 

ratrix and visits both its upper and lower branches in the figure; the gold is a regular 

torus which lies just “outside” this layer. Unlike the the red and yellow tori, their an- 

gle coordinates span full range. The four “lobes” which they mark actually represent 

only two stable regions, one containing the red torus, the other, the yellow; the pieces 

at the extreme ends are attached to the latter. The evident anti-correlation in hori- 

zontal and vertical action coordinates is exactly what is expected from a first order 

resonance model of a difference resonance. Two stable resonant orbits exist within the 

yellow and red tori near the regions S1 : p1 - pz N 0 (yellow) and S2 : ~1 - ~2 2: ?r 

(red); two unstable resonant orbits lie between these near the intersections of the blue 

and gold orbits, near VI : ‘pl - spa N 7r/2 and CJz : ~1 - ‘pz N RR/~. 
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A. Bifurcations and resonant seeding 

We turn now to the bifurcations of the separatrix as the helix is opened and all 

but two of the beam-beam interactions become off-centered. This is an academic 

thought experiment - a partially opened helix with both proton and antiproton 

bunches present is not a scenario for collider operations - and this section should 

be considered akin to a report of its more interesting results. In keeping with the 

exploratory mode, we shall merely record our observations here, not perform detailed 

analysis. 

The configuration of Figure 1 corresponds to zero separation: all beam-beam 

collisions are centered (head-on). F’g r ure 2 shows an orthographic projection of the 

lower left hand viewport seen along the ~pr = ~2 diagonal. (vr is the horizontal 

and ‘pz the vertical angle coordinates.) The thickness of the “tubes” in regions Sr 

and Sz is an artifact produced by the slight ripple seen most prominently in the 

yellow torus of Figure 1 and could be removed by using a better set of coordinates, 

obtainable via normal form algorithms.[2,3] The separatrix, on the other hand, is 

legitimately chaotic, albeit weakly. Nonetheless, the shape is what one expects from 

the resonant normal form of a first order perturbation theory, which supports the 

notion of “resonant seeding” in four dimensions, a point to which we shall return 

later. 

Although the orbits in regions Sr and S, appear similar in this projection they 

can be very different, depending on the tunes. The slightly rotated, perspective view 

of Figure 3(a) shows tori surrounding S, which are banded - indicating a hierarchy 

of resonances -winding around the “principal” tori, while the stable, resonant, orbit 

in region Sz is actually a family of period eight orbits strung together. The small tori 

appearing in Figure 3(b) surround one member of this family. Now, periodic orbits 

could be found semi-analytically via Newton’s method applied to the appropriate 
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iterate of the map. Primary resonant orbits, like the one heading down the center of 

Figure 2, cannot be found directly via Newton’s method, as they are not necessarily 

periodic. However, they could be located approximately by a resonance analysis. 

The banded tori of St are more complicated. Three levels of resonant behavior are 

identifiable from the figure. The primary one is the 2~1 - 2~s resonance which is 

partially straightened by the action-angle coordinates used for the projection. The 

screw-like tori appearing in Figure 3(a) indicate a secondary level of resonance, and 

a tertiary level is observed in the “inner” one, which is itself striated. Discussions 

of resonances and resonance behavior usually limit themselves to the primary level, 

which is typically associated with a line on a tune diagram, of the form KL. r/ + n = 0. 

The local action-angle coordinates which would straighten the secondary or tertiary 

resonances, cannot be mapped one-to-one onto those of the primary resonance. The 

authors know of no practical analytic way to discover the existence of non-primary 

resonances, such as those appearing in the banded tori of Figure 3(a), other than to 

find and display them via graphics-based exploration. 

As the helix begins to open and the beam-beam interactions become off-centered, 

the first global bifurcation takes place, as illustrated in Figure 4. The separatrix 

no longer connects the two unstable resonant orbits but has split into two branches, 

each of which is attached to one of them: the central “inverted figure eight” and its 

“cocoon.” The situation may be even more complicated: there is a suggestion that 

the unstable resonant orbit Ur has itself split into two. 

As the separation increases, a second bifurcation occurs in the vicinity of the 

unstable resonant orbit Ua. (See Figure 5) Rather then forming the “cocoon” of 

Figure 4 the branch closes quickly, forming a new figure eight. LJnlike the previous 

bifurcation, this is not one which takes a heteroclinic branch and changes it into a 

homoclinic one. The branch is homoclinic both before and after the bifurcation; what 
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has changed is how it closes back on itself at large amplitudes, analagous to what 

happens when one changes the sign of a shear term in a two-dimensional problem. 

This structure may be connected with the creation of “irregular” resonant orbits, 

which typically are confined to a plane, either near-horizontal or near-vertical.’ They 

can arise from a resonant normal form Hamiltonian, say of the form 

H = Ho(l) + H,(I)cos(m.y$ 

by setting H1, the coefficient of the phase-dependent term, to zero. Unlike regular 

resonant orbits, which might arise by setting 114.2 = ?T, for example, their resonant 

combination of phase coordinates may depend on the system’s parameters, and one 

of their amplitude coordinates, II or I?, frequently vanishes, which is what confines 

the motion to a plane. The branch of the separatrix connecting these “irregular” 

resonances tends to be more phaselocked than normal. Shown in Figure 6 is a rather 

clean example of an orbit close to such a separatrix, observed in this system but with 

the helix opened wide enough to make the dynamic less chaotic. The orbit spends 

most of its time with the relative phase locked at ‘pr - ‘ps cx 0 or 91 - ~2 N x, the 

transitions between these two regions taking place comparatively rapidly. Spatially, 

this corresponds to a a near-planar orbit whose plane slowly oscillates between the 

horizontal and vertical directions: as the amplitude in one plane goes through zero, 

the corresponding phase jumps rapidly through ?r. The alternative extreme would 

be an orbit whose relative phase was locked at ‘pr - ys N &n/2, which would pass 

through a circular intermediate state. 

Even though this system is nonintegrable and its separatrices are chaotic, they 

exhibit patterns of bifurcation which are essentially identical with those found in 

‘This terminology is not standard; it was introduced in reference [Ill. Stated mcm precisely, the 

orbit’s samples, which are its Poincar4 sections, lie in a plane. 
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integrably resonant systems.[9] That they do so is observational support for the idea 

of “resonant seeding”: the notion that chaotic layers in the stability boundary of norm- 

integrable systems are built up around and dominated by separatrices that can be 

associated with underlying, integrable or near-integrable, usually low-order resonance 

normal forms.[ll, 81 In particular, when the system is unstable at large amplitudes, 

the “boundary layer” between stability and instability - what is usually called the 

“dynamic aperture” - is frequently associated with the separatrices from these low 

order resonances. This is an idea which has had some numerical confirmation in two 

dimensional phase space [S, 41; we now see evidence for it in four dimensions as well. 

B. Unravelled tori: small entropy chaos 

The most interesting effect which we observed was that tori in region S’z appeared 

to “unravel” as the helix opened. Representative orbits of this kind are shown in 

Figure 7. They look much like long, tangled threads and are almost periodic, with 

period five: watching one develop on the screen would reveal that it almost returns 

on itself after five iterations. This periodicity is clear from the static figure as well, 

and it would show up as a huge spike in any spectral analysis. Correspondingly, 

the lengthening of the “thread” is slow; hundreds of iterations may be required to 

form a single “loop.” From the standpoint of the theory of chaos, we may interpret 

this orbit as chaotic with exceedingly small KS entropy, or a near-zero Lyapunov 

exponent. That is, these “tangled” orbits are “almost but not quite” regular; they 

seem, at least superficially, much like one-dimensional objects and do not have the 

“random” appearance one normally associates with chaotic orbits. 

No “tangled” orbits appeared in region Sr. While we do not understand the 

physical mechanism that produces such orbits or makes the distinction between ,Sr and 

&, we conjecture that & contained orbits which sample the core of the source bunches 
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more frequently. To test this, we recorded x2, the bunch sepa,ration normalized to 

the local bunch size, at individual beam-beam encounters for orbits in both regions. 

Figure 8 shows two typical results, and there is some indication that the guess is 

correct. If so, the conceptual picture which emerges is this: the ordinary tori of ,S’r 

spend most of their existence at encounter ranges near x x 3+ while a tangled orbit 

spends significant time either much closer, x N 2, or much further out, ;y > 5. When 

encounters are at great distances, the tangled orbit lies on one of a family of KAM 

tori whose tunes happen to be near a fifth integer. When the particle experiences a 

close encounter, it can jump from one torus in this family to another. We conjecture 

that this mechanism, in conjunction with the fact that the orbit is almost periodic 

(with period 5), gives the orbit its extraordinary appearance. 

IV. CLOSING REMARKS 

Exploring the phase space of the distributed, off-centered bean-beam interac,tion 

has revealed both phenomena which are variations on old themes and one tbat is 

perhaps new: the “tangled” orbits, exhibiting very low entropy chaos. Chaotic sepa- 

ratrices in four-dimensions have been observed to bifurcate in ways which mimic low 

order integrable resonances. The next step would be to return to analysis and confirm 

four-dimensional resonant seeding analytically by computing the separatrices of low 

order resonant normal form Hamiltonians and comparing them to the observed ones. 
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APPENDIX: CENTERED BEAM-BEAM TUNESHIFTS 

In the case of a centered (head-on) beam-beam interaction, an integral represrn- 

tation can be written for the tune shift. Begin with the following Hamiltonian. 

H($L;@ = !L.l+ ~v(Z)b(~ - ebb) 
ebb 

This models a decoupled storage ring with horizontal and vertical tunes r/ = (vr, ~1); 

each & marks the location of a beam-beam encounter, treated as impulses, with 6~~ 

being a 2%-periodic delta function. The ordered pair c = (11, 12) are transverse coor- 

dinates and can be obtained from the “action-angle” coordinates 4 and I according - 

to the prescription, 

%k = dmsin($k(6) - Vko + $k), k = 1,2, 

where @ and $ are Courant-Snyder lattice functions. We use the Montague form for 

the potential U arising from ofset, normally oriented, Gaussian bunch.[l5] 

AF-LNrp 2$1 + l/P’) 

N -1 N . 5 x lo-” m x N[lO’Ol 
E[TeV] ’ 

(A21 

Components of the doublet, 0 are the horizontal and vertical standard deviations of 

the bunch density, whiled is its offset. These can, end do, depend on location, O~I,. N 

is the number of particles in the bunch, and E is the (lab-frame) energy of a particle 

in it. The sign is chosen to correspond to p-p collisions; for p-1, it would be positive. 

Neglecting resonances, the first order expressions for the tunes are obtained by 

averaging aH/l?L over all angles. The tune shifts are accordingly given by the follow- 

ing. 
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In the next sections we shall evaluate these averages, first for d = 0 and then for the 

general case. 

This is a bit formal, of course: not only does the Hamiltonian contain a delta 

function, but the integral expression is logarithmically divergent. (The potential 

energy of a line charge is infinite.) However, this does not present a problem, as only 

its derivatives are physically significant, and they are finite. 

Tune shifts are obtained by differentiating with respect to the “action” coordi- 

nates, which means we must substitute for transverse coordinates from Eq.(AI) into 

Eq.(A2). When this is done, the exponential factors take the form, 

exp [-;-2L] =exp p~@il;p:;l.Q + y 

= exdCk(cos 2pk - l)] , 

where Ck = @klk/2(t + ui) and pb = I/J~ - ~0 + &, and we have set d = 0. 

Following Bambade [l], we expand the exponent in a Fourier-Bessel series. 

,+s2@-1) = ZJ() + 2 5 Z,,(C) cos(n 2p) 
7L=l 

Here, Z,(C) = &In([), where I,, is the modified Bessel function, 19L(<) = (-i)“J,,(iC). 

The integrand contains a product of two such series with differing arguments. Obvi- 

ously, only the rz = 0 term will survive angle-averaging, which gives us the result: 

AK= &E/,-dt&fj t:c,,zo(G) Obb -k-l m 
(A3) 

For purposes of numerical evaluation, it is best to change the integration vari- 

able to make the limits of integration finite. A choice which (a) takes the asymp 

totic behavior of the integrand into account and (b) is symmetric under interchange 

16 



of indices is 2u F l/(1 + t/ulaz). With this it is convenient to introduce auxiliary 

functions, (1 E 1 - ~(1 - or/us), and similarly for <a. It is easy to confirm that 

UJ(~ + 0:) = uru& and <k = (~kl~u~/2oro&). The upshot is that Eq.(A3) is rewrit- 

ten as follows. 

Ax = ; Yg /,lw& $ (Zo(G PdCz)) 

In particular, evaluating the horizontal tune shift from a single bean-beam inter- 

action gives us, 

Aur=A/’ dw w”)zo(~2) 

‘AT 0 w&G 81, 

It is reassuring to check that the correct limit is achieved at small amplitudes. Setting 

r = 0 we get, 

Au, = -;-J,’ dw/ fi 

Interestingly enough, this integral can be evaluated in closed form, which results in 

the usual small-amplitude beam-beam tune shift. 
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FIGURES 

FIG. 1. Separatrix of a 2~ - 2~ resonance and island orbits. 

FIG. 2. A projection of the separatrix for closed helix. 

FIG. 3. Side view of representative orbits from stable regions (a) S1 and (b) Sz. 

FIG. 4. Appearance of the separatrix for low separator exc.itation. 

FIG. 5. Appearance of the separatrix for higher separator excitation 

FIG. 6. Example of an almost phaselocked orbit near the separatrix of an irregular 

resonant orbit. 

FIG. 7. Tori in the region associated with periodic orbits begin to “unravel” when the 

separation between beams is large. 

FIG. 8. Histograms of encounter distances for orbits in the (a) “regular” and (b) 

“unravelling” regions. 
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